首页> 外文OA文献 >Numerical methods for wave propagation in solids containing faults and fluid-filled fractures
【2h】

Numerical methods for wave propagation in solids containing faults and fluid-filled fractures

机译:含断层和充液裂缝的固体中波传播的数值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis develops numerical methods for the simulation of wave propagation in solids containing faults and fluid-filled fractures. These techniques have applications in earthquake hazard analysis, seismic imaging of reservoirs, and volcano seismology. A central component of this work is the coupling of mechanical systems. This aspect involves the coupling of both ordinary differential equations (ODE)(s) and partial differential equations (PDE)(s) along curved interfaces.  All of these problems satisfy a mechanical energy balance. This mechanical energy balance is mimicked by the numerical scheme using high-order accurate difference approximations that satisfy the principle of summation by parts, and by weakly enforcing the coupling conditions.  The first part of the thesis considers the simulation of dynamic earthquake ruptures along non-planar fault geometries and the simulation of seismic wave radiation from earthquakes, when the earthquakes are idealized as point moment tensor sources. The dynamic earthquake rupture process is simulated by coupling the elastic wave equation at a fault interface to nonlinear ODEs that describe the fault mechanics. The fault geometry is complex and treated by combining structured and unstructured grid techniques. In other applications, when the earthquake source dimension is smaller than wavelengths of interest, the earthquake can be accurately described by a point moment tensor source localized at a single point. The numerical challenge is to discretize the point source with high-order accuracy and without producing spurious oscillations. The second part of the thesis presents a numerical method for wave propagation in and around fluid-filled fractures. This problem requires the coupling of the elastic wave equation to a fluid inside curved and branching fractures in the solid. The fluid model is a lubrication approximation that incorporates fluid inertia, compressibility, and viscosity. The fracture geometry can have local irregularities such as constrictions and tapered tips. The numerical method discretizes the fracture geometry by using curvilinear multiblock grids and applies implicit-explicit time stepping to isolate and overcome stiffness arising in the semi-discrete equations from viscous diffusion terms, fluid compressibility, and the particular enforcement of the fluid-solid coupling conditions. This numerical method is applied to study the interaction of waves in a fracture-conduit system. A methodology to constrain fracture geometry for oil and gas (hydraulic fracturing) and volcano seismology applications is proposed. The third part of the thesis extends the summation-by-parts methodology to staggered grids. This extension reduces numerical dispersion and enables the formulation of stable and high-order accurate multiblock discretizations for wave equations in first order form on staggered grids. Finally, the summation-by-parts methodology on staggered grids is further extended to second derivatives and used for the treatment of coordinate singularities in axisymmetric wave propagation.
机译:本文提出了一种数值方法,用于模拟含断层和充液裂缝的固体中的波传播。这些技术已应用于地震危险性分析,储层地震成像和火山地震学中。这项工作的核心部分是机械系统的耦合。该方面涉及沿弯曲界面的两个常微分方程(ODE)和偏微分方程(PDE)的耦合。所有这些问题都满足了机械能平衡。这种机械能平衡是通过数值方案模拟的,该数值方案使用满足零件求和原理的高阶精确差分逼近,并且通过弱执行耦合条件。本文的第一部分考虑了将地震理想化为点矩张量源时沿非平面断层几何形状的动态地震破裂的模拟以及来自地震的地震波辐射的模拟。通过将故障界面处的弹性波方程与描述故障力学的非线性ODE耦合来模拟动态地震破裂过程。断层的几何形状很复杂,可以通过结合结构化和非结构化网格技术进行处理。在其他应用中,当地震震源尺寸小于目标波长时,可以通过定位在单个点上的点矩张量震源来准确描述地震。数值上的挑战是要以高阶精度离散点源,而又不产生寄生振荡。论文的第二部分提出了一种在充液裂缝中及其周围传播波的数值方法。这个问题需要将弹性波方程耦合到固体中弯曲和分支裂缝内部的流体。流体模型是结合了流体惯性,可压缩性和粘度的润滑近似值。骨折的几何形状可能会出现局部不规则,例如颈缩和锥形尖端。数值方法通过使用曲线多块网格离散化裂缝的几何形状,并应用隐式-显式时间步长来隔离和克服半离散方程式中的刚度与粘性扩散项,流体可压缩性以及特定的流固耦合条件。该数值方法用于研究裂缝导管系统中波的相互作用。提出了一种方法来限制油气的裂缝几何形状(水力压裂)和火山地震学应用。本文的第三部分将逐部分求和方法扩展到交错网格。这种扩展减少了数值离散,并使得能够在交错网格上以一阶形式为波动方程制定稳定且高阶的精确多块离散化。最后,将交错网格上的逐部分求和方法进一步扩展到二阶导数,并用于处理轴对称波传播中的坐标奇异点。

著录项

  • 作者

    O'Reilly, Ossian;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号